Montpelier Primary School

Calculation Policy

Year	3	4	5	6
	Add 1 and 2 digit numbers to 3 digit numbers. Add multiples of 10,100 to 3 digit numbers. Add multiplies of 10 and 100. Know pairs of 100 Add single digit bridging through boundaries. Partition second number to add and recombine. Use near doubles to add. Add near multiples of 10 and 100 by rounding and adjusting.	Continue to add numbers mentally. Add 1s, 10s and 100s to 3 digit number. Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$. Fluency of 2 digit +2 digit. Partition second number to add then recombine. Decimal pairs of 10 and 1. Use near doubles to add. Add near multiples. Solve addition two-step problems in contexts, deciding which operations and methods to use and why.	Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$, tenths. Fluency of 2 digit +2 digit including with decimals. Partition second number to add then recombine. Use number facts, bridging and place value. Adjust numbers to add. Add numbers mentally with increasingly large numbers	Perform mental calculations, including with mixed operations and large numbers Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}$, 1000s, tenths, hundredths. Fluency of 2 digit +2 digit including with decimals. Partition second number to add then recombine. Use number facts, bridging and place value. Adjust numbers to add.
	Addition of fractions with the same denominator within one $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$ whole.	Addition of fractions with the same denominator within one whole. $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$	Add fractions with the same denominator and denominators that are multiples of the same number. $\frac{1}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{5}{4}$ \square Recognise mixed number fractions and improper fractions and convert from one to the other and write mathematical statements e.g. $2 / 5+4 / 5=6 / 5=11 / 5$	Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions. Start with fractions where the denominator of one fraction is a multiple of the other (e.g. $1 / 2+$ $1 / 8=5 / 8$) and progress to varied and increasingly complex problems Practice calculations with simple fractions and decimal equivalents to aid fluency
		Add numbers with up to 4 2458 digits using the formal written methods of columnar addition where $+\frac{596}{3054}$ appropriate.	Add whole numbers 23454 with more than 4 digits, $+\quad 596$ including using formal written methods (columnar addition).	Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.

Year	FS	1	2	3
	One less with the support of a number line. Count back from 10. Practical activities involving subtraction. 1-1 counting.	Number bonds, subtraction: 5, 6, 7, 8, 9, 10. 1 less. Count back Subtract 10. Difference between by counting on. Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 $=\square-9$	10 less. Number bonds, subtraction: 20, 12, $13,14,15,16,17,18,19$ Subtract 1 digit from 2 digits by bridging. Partition second number, count back in 10 s then 1 s . Subtract 10 and multiples of 10. Subtract near multiples of 10. Difference between by counting on. Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.	Subtract 1 and 2 digit numbers from 3 digit numbers. Subtract single digit by bridging through boundaries. Partition second number to subtract. Subtract multiples of 10 and 100. Difference between by counting on. Subtract near multiples of 10 and 100 by rounding and adjusting.
気			Pupils should count in fractions up to 10 , starting from any number and using the and equivalence on the number line (for example, $1 \frac{1}{4}, 1 \frac{1}{2}, 1$ $3 / 4,2$.) $1^{\frac{3}{4}}$	Count down in tenths. Subtract fractions with the same denominator within one whole. $\begin{array}{\|lll\|} \hline \frac{3}{6} & -\frac{1}{6} & =\frac{2}{6} \\ \hline \end{array}$ Represent using the bar model \square
	Own mark making to represent numbers. Pictorial representations of problems. Correct formation of numerals to 10.	Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs	Subtract two two-digit 61 numbers using concrete 73 objects, pictorial $-\underline{46}$ representations progressing $\underline{27}$ to formal written methods	 Subtract numbers with 2131 up to three digits, using 344 formal written methods of $-\underline{187}$ columnar addition and $\underline{157}$ subtraction

Calculation Policy-Subtraction

Year	FS	1	2	3
Su!puezsぇəpun ןenłdəəuoכ siu!doןəләа	Counting back songs, rhymes and games. Practical jumping back on a class number line. One less with apparatus. Practical subtraction. Numicon, missing pieces.	Number bonds (Ten frame) Difference between 7 and 10 6 less than 10 is 4 Count out, then count how many are left. $7-4=3$ Count back on a number track, then number line. $15-6=9$ Difference between 13 and 8 $\begin{aligned} & 13-8=- \\ & 8+_{-}=13 \end{aligned}$ Bar model:	Number track / Number line - jumps of 1 then efficient jumps using number bonds $23-5=18$ Using a number line, $73-46=26$ Difference between 73-58 by counting up, 58 +_ = 73 Taking away with dienes 68-24 Get out dienes for the First number. Subtract the ones first. Then subtract the tens. Bar Model:	Taking away and exchanging, 344 - 187 Set up 344 Regroup a ten for ten ones. Then subtract 7 units from the 14 units. Regroup a hundred for 10 tens. Then subtract 8 tens from the 140. Finally subtract 100 from the 2 hundreds. Bar Model:

Year	3	4	5	6
	Subtract 1 and 2 digit numbers from 3 digit numbers. Subtract single digit by bridging through boundaries. Partition second number to subtract. Subtract multiples of 10 and 100. Difference between by counting on. Subtract near multiples of 10 and 100 by rounding and adjusting.	Subtract multiples of $10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$. Fluency of 2 digit subtract 2 digit numbers. Partition second number to subtract. Decimal subtraction from 10 or 1. Difference between by counting on. Subtract near multiples by rounding and adjusting. Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why	Subtract multiples of $10 \mathrm{~s}, 100 \mathrm{~s}$, 1000s, tenths. Fluency of 2 digit - 2 digit including with decimals. Partition second number to subtract. Difference between. Adjust numbers to subtract. Subtract numbers mentally with increasingly large numbers. E.g. 12 $462-2300=10162$ Use rounding to check answers. Practice subtracting decimals, including a mix of whole numbers and decimals and decimals with different numbers of decimal places. Mentally subtract tenths and one-digit whole numbers and tenths.	Perform mental calculations, including with mixed operations and large numbers. Use estimation to check answers to calculations. Subtract multiples of 10 s , 100s, 1000s, tenths and hundredths. Partition second number to subtract. Use number facts bridging and place value. Adjust numbers to subtract. Difference between.
	Count down in tenths. Subtract fractions with the same denominator within one whole. $\frac{3}{6}-\underline{1}=\underline{2}$ Represent using the bar model	Count down in hundredths. Subtract fractions with the same denominator. Solve simple measure and money problems involving fractions and decimals to two decimal places.	Use physical and pictorial representations to stress the place value relationships between money, decimals and whole numbers e.g. place value mat.	Subtract fractions with different denominators and mixed numbers. Practice calculations with simple fractions and decimal fraction equivalents to aid fluency.
	Subtract numbers with 231 up to three digits, using -344 formal written methods $-\underline{187}$ of columnar addition $\underline{157}$ and subtraction	Subtract numbers with up to 4 digits using the formal written methods of columnar addition where appropriate.	Subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Calculation Policy-Multiplication

Year	FS	1	2	3
	Doubling with apparatus. Count in 2's	Count in $2 \mathrm{~s}, 10 \mathrm{~s}, 5 \mathrm{~s}$, . Doubles up to 10. Double multiples of 10 Solve one-step problems involving multiplication.	$2 \mathrm{x}, 10 \mathrm{x}, 5 \mathrm{x}$ multiplication facts Doubles up to 20 and multiples of 5 . Count in 3s. Recognise odd and even numbers. Show that multiplication of two numbers can be done in any order (commutative- $5 \times 4=4 \times 5$). Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts	Review $2 x, 5 x$ and $10 x$ multiplication facts. $4 \mathrm{x}, 8 \mathrm{x}, 3 \mathrm{x}, 6 \mathrm{x}$ multiplication facts (using doubling patterns). Double two digit numbers. Develop efficient mental methods using commutativity $5 \times 4=4 \times 5$ and associativity $(2 \times 4) \times 3=2 \times(4 \times 3)$. Derive related multiplication and division facts. Calculate multiplication statements including 2 digit multiplied by 1 digit. Partitioning-multiply the tens first then the ones. $(39 \times 7=30 \times 7+9 \times$ 7)
			Write simple fractions for example $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$. Begin to relate multiplication and division models to fractions and measures.	Recognise and show using diagrams, equivalent fractions with small denominators.
	Children begin to record in the context of play, practical activities, or problem solving.	Encourage children to begin to write it as repeated addition in preparation for Year 2. e.g. , $2+2+2+2=8$	Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs.	Write and calculate mathematical statements for \div using the x tables they know progressing to formal written methods.

Calculation Policy-Multiplication

Year	3	4	5	6
	Review $2 x, 5 x$ and 10x multiplication facts. $4 x, 8 x, 3 x, 6 x$ multiplication facts (using doubling patterns). Double two digit numbers. Develop efficient mental methods using commutativity $5 \times 4=4 \times 5$ and associativity $(2 \times 4) \times 3=2 \times(4 \times 3)$. Derive related multiplication and division facts. Calculate multiplication statements including 2 digit multiplied by 1 digit. Partitioning-multiply the tens first then the ones. $(39 \times 7=30 \times 7+9 \times 7)$	Review $2 x, 5 x, 10 x, 4 x, 8 x, 3 x$, and $6 x$ multiplication facts. 10 times bigger. $7 x, 9 x, 11 x, 12 x$ multiplication facts. Double larger numbers and decimals. Recognise and use factor pairs and commutativity $(5 \times 4=4 \times 5)$ in mental calculations. Multiply by 0 and 1 . Multiplying together three numbers (using the associative law $(2 \times 4) \times 3=2 \times(4 \times 3))$ Practice mental methods and extend this to three-digit numbers to derive facts, (for example $3 \times 200=600$ can be derived from $2 \times 3=6$)	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers Establish whether a number up to 100 is prime. Recognise and use cube and square numbers. Multiplication facts up to 12×12. 10, 100, 1000 times bigger. Double larger numbers and decimals. Partition to multiply mentally. Multiply whole numbers and those involving decimals by 10,100 and 1000.	Perform mental calculations, including with mixed operations and large numbers (increasingly large numbers \& more complex calculations). Use estimation to check answers to calculations. Know the square numbers up to 12×12 \& derive the corresponding squares of multiples of 10 e.g. $80 \times 80=$ 6400 Multiply numbers by 10,100 and 1000 giving answers up to three decimal places. Review multiplication facts up to 12×12. Partition to multiply mentally larger numbers. Double larger numbers and decimals.
	Recognise and show using diagrams, equivalent fractions with small denominators.	Recognise and show, using diagrams, families of common equivalent fractions. Understand the relation between non-unit fractions and multiplication of quantities, with particular emphasis on tenths and hundredths. Make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities. Use factors and multiples to recognise equivalent fractions and simplify where appropriate.	Multiply mixed numbers and proper fractions by whole number, supported by diagrams and materials. Identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Scaling by finding $1 / 4$ of $1 / 2$	Multiply simple pairs of proper fractions writing the answer in its simplest form. E.g $1 / 4 \times 1 / 2=1 / 8$

Calculation Policy- Multiplication

Created in Association with

Maths in Action Group

